Object-Oriented Systems Design
A Chat System

Michael Hauser

November 2001

Workshop: AW3

Module: EE5029A

Tutor: Mr. Miller

Course: M.Sc Distributes Systems Engineering
Lecturer: Mr. Prowse

CONTENTS

Contents
(1 Aims and Objectives| 3
2 Networking in Javal 4
RIUDPl . . .o 4
2 TCPl . . . o 4
2.3 Multicast]o 5
[3 The chat system| 6
[3.1 Requirements| 6
[3.2 Analysis| 6
3.3 Design| 7
[3.3.1 The Server Design| 8
[3.3.2 'T'he Client Designl. 9
(3.4 Implementationl 10
8.4.1 Client and Serverl 10
(3.4.2 The Administrator Clientl 11
4 Conclusionl 12

1 Aims and Objectives

1 Aims and Objectives

Aim of this assignment is to become familiar with th basic principles of
networking in Java. This includes TCP, UDP multicast and their usage
in Java. To show the possibilities a chat system consisting of server and
client is build.

2 Networking in Java

2 Networking in Java

For communication between processes on different machines there has
to be a solution, that can easily be 1 by user programs. This solution
is called sockets. There are three different possibilities to use sockets:
TCP which provides a connection oriented service for transmitting data
bidirectional, UDP which provides a connection less service for sending
datagrams that don’t have to be reliable and multicast, which is based
on UDP and allows accessing multiple receivers. They all have one thing
in common: since they all use IP which is a connection-less protocol
without quality of service, they neither can provide quality of service. So
those protocols can’t be used for real-time applications. But for a chat
application or transfer of data the protocols are very useful. To distin-
guish different sockets from each other each is assigned a port number,
that has to be unique. Some of the port numbers are used for common
applications. They are called the well known ports. For example nearly
every web server accepts connections on TCP port 80. So the browser
tries to connect to this port, if no other port is specified. To exchange
data over a connection it is mandatory, that both sides know a protocol.
This protocol is dependent on the application and specifies the meaning
of the sent data. In the following subsections the three protocols and
their usage in Java are described.

2.1 UDP

UDP (user datagram protocol) provides a service for sending data that
is less then 64kB. This protocol is connection less. That means that
the datagram is just sent and there is no control if the receiver really
got the message. If control over reception is needed, the receiver has to
acknowledge the arrival on it’s own. Protocols like this are used if the
more complex protocol TCP is not implemented, or to send data where
it doesn’t matter if it’s not received. For example to view a video stream
it doesn’t matter if some of the packets are lost because the user won’t
recognise if a single frame is missing.

2.2 TCP

Unlike UDP, TCP (transport control protocol) is a connection oriented
protocol, that is best described by a bidirectional pipe, where on both
sides data can be sent end received. The usage is very similar to file usage.
First the socket has to be created and opened. After that data can be
sent or received from it. To finish using the socket is has to be closed. In
Java it is very easy to use sockets. There are two kind of sockets using
TCP in Java: ServerSocket and Socket. A ServerSocket can wait
for a connection of a Socket on a specified port. After accepting the
the connection server and client can exchange data in either one or both
ways. To read from or write data to a socket the program can get input

2.3 Multicast

and output streams from the socket. Those streams can be buffered, so
they only deliver data if a amount of data, for example a whole line of
text, is completely received. Using this technique there is no difference
between the usage of a file and a socket.

2.3 Multicast

The two protocols described above only provide point to point connec-
tion. They do not allow to send the same data to different receivers.
For this purpose multicast can bee used. The user only has to specify a
group, that is specified by the IP address, that he wants to join. This
address has to be in the range from 224.0.0.0 to 239.255.255.255. The
receiver can join a multicast group by binding to a socket and waiting for
incoming data. Senders just send datagrams to a group using the correct
IP address.

3 The chat system

3 The chat system

To show the usage of the three protocols described above a chat system
is build. It consists of three main parts: the chat server, the chat client
and an administrative client.

3.1 Requirements
The system has to meet the following requirements:
e A client should be able to register to the server.

e Functionality to send messages that it receives from one client to
all connected clients.

e A possibility for the clients to disconnect.

e A possibility for the administrator to see the last ten messages using
a normal browser.

3.2 Analysis

The requirements are leading to the use cases shown in figure [l The
first three use cases are related to the normal user. The last one is for
administrative use. Following the use cases are described in detail.

Chat

D

./ A 1

Figure 1: Use cases for the chat system

e A user wants to connect to the server. After finding, the server
inserts the client in a table, to be able to send messages to each
client that has registered. After this the server sends a message to
all clients that the user has registered.

3.3 Design

e The use case chat contains sending and receiving of messages from
the server. A client can send messages to the server. The server
sends those messages to all clients. Each client has to wait for
incoming messages from the server, to display them to the user.

e The clients can disconnect from the server. The server has to re-
move them from the list of clients. After this a message is sent to
all remaining clients, that the user has left the system.

e To administrate the server a browser is used. The server has to
save the last 10 messages to send them to a normal web browser
using the http protocol.

Figure 2] shows an activity diagram. A whole life cycle of a client is

[register)

(receive) (send) (disconnect)

Figure 2: Activity diagram of a whole client life cycle

shown. After connecting the client can send and receive messages and
then when he has finished he can disconnect.

3.3 Design

The system is divided into two main parts: one for the server and another
one for the client. The core of each are classes called Client and Server.
Both have to provide main functionality of a chat system. For the parts
dependent on the type of connection interfaces or abstract classes have
to be used, so the communication may easily be switched from the socket
communication to RMI. In this apprach multicast will be used to find
the server. The client emmits a multicast message. An example of a
datagramm that is used to connect can be seen in figure [3| The name
of the client that is connecting is displayed inverted. In the upper part

3.3 Design

=M <{capturer - Ethereal

File Edit Capture Display Tools Help

Frame 1 (49 on wire, 49 captured) =
Ethernet 11

Internet Protocol, Src Adde: zoidberg (192,168,1,10, Dst Adde: 224,32,4.5 (224,3.4.5)
B User Datagram Protocol, Src Port: 32863 (32869), Dst Port: 4223 (4223)

Source port: 32869 (32869)

Testination port: 4223 (4223)

Lengthy 15

Ch

0000 01 00 Se 02 04 06 00 a0 24 53 5b 91 08 00 45 00
0010 00 23 00 00 40 00 01 11 d4 18 c0 a8 01 01 e0 03
0020 04 06 80 65 10 FF 00 OF 7o £3 RNl
020

=T

Filt.er:| |ip‘src == zoidbers A Reset“ﬂata {data)
L

Figure 3: A multicast packet

of the figure source and the destination IP addresses can be seen. This
also shows that mulitcast is realised by using UDP. The only thing that
makes the packet a multicast is the destination IP address. The only
thing client and server have to know is the mulit cast group. This could
also be realised by connecting to a socket using TCP, but then the client
has to know the exact IP address of the server. The only disadvantage is
that this system can only be used in an intra net because multicasts are
not routed. So it is not possible for the client to connect to a server that
is somewhere in the internet. After sending the multicast the client will
create a server socket and wait for the server to connect to it. Here the
roles of server and client are exchanged, but after the server has connected
to the client (he knows the address from the arrived multicast package)
both, client and server can get in- and output streams from the sockets
and use the streams for sending and receiving. After the connection
is established there is no difference between client and server. They
both can use the streams equaly. For sending and receiving messages
TCP sockets will be used because then server and clients can rely on
the connection oriented protocol that is provided by TCP. If UDP or
multicast would have been used here the programms would have to make
sure that the messages are received by the other side. So a protocoll
would have to be implemented, that is already provided by TCP.

3.3.1 The Server Design

To enable the clients to connect while other clients are already using the
system, there has to be a part of the server, that is running in parallel,
to accept connections. This will have to be implemented as a thread
because once a server listens on a specified port, it will not return, until
someone connects to this port. To submit the messages to all clients,

3.3 Design

references to all have to be stored inside the server. So it is possible
to go through a list and send the message to each element of this list.
Another approach is to start a thread for each connection. There is an
advantage in using this, because if one of the client is stopped without
disconnecting from the server the server would have to wait for a timeout.
But since the messages have to be passed fast to the receivers for each

‘ Thread |
UserThread

Runnabie
Server m SocketUserThread |

| SocketRegistrar |

Thread |
Admin

Figure 4: Class diagram of the server

client a thread is started. To save memory and the time for creating the
threads some clients could be grouped in one thread. Then again if one
of them is unproperly disconnected the others will have to wait before
they get the message. But for a server where the clients are changing
very much this could be useful. The class diagram figure [4 shows the
Server that uses three types of threads to provide it’s functionality. The
Registrar is used as a sort of portal to the server. The Clients have to
connect to an object of this class. After this the Registrar will create a
UserThread that is passed to the server to be stored in a list of clients.
All this can be done independent of the type of connection. To enable
communication using RMI there only has to be implemented the abstract
methods in the classes Registrar and UserThead. The third part of the
server is the thread for administrative purposes. This also has to be
realized as a parallel thread to ensure communication while the server is
administrated.

3.3.2 The Client Design

The client is realized easier compared to the server because it doesn’t
have to do all the tasks the same time. The main part of the client
is in the class Client. This class combines model, view and control
in one class. That’s not a very good design, but since the application
is very small an easier way can be chosen. The communication part is
realized in the abstract class ServerConnection that provides the four
methods for communication: register, send, receive and disconnect. A
real ServerConnection has to implement those methods to meet the
requirements of the communication type that is chosen. By using this

3.4 Implementation

JFrame
Actianiis tenear
Client

Thread
FOTerLoRaectiog SocketServerConnection |

Figure 5: Class diagram of the client

abstract class it can be made sure, that the client is independent of the
type of communication. So this part can be exchanged independent of
the client. In figure [6] a whole sequence of the client connecting to the

Client Reqgistrar Server
Client Registrar Server

User

Connect

o=
{i==

l

|

| |

L

Wifﬁ UserThread
- create UserThread

L]

register(UserThread)void

i

|

|

|) :
dist wwoid

kend(string)vaid Sane g

n
=l
==x}

]

distring)void

i

T
|
|
|
I

L
|
|
|
|
|
|

T
|
|
|
|
|
|

Figure 6: Sequence diagram of a client connection to the Server
Server and receiving the reception message can be seen.

3.4 Implementation

Using the results of the previous sections it is no difficult task to imple-
ment the chat system.

3.4.1 Client and Server

The implementation of the server is the most time consuming task. Be-
cause three threads are running in parallel it has to be made sure that

10

3.4 Implementation

they don’t interfere. It is very important not to mix the functional-
ity of the chat server with the communication to stay independent of
the type of communication. For sending and receiving messages socket
communication is realized in this assignment. The server doesn’t use
ServerSocket because it is easier if the clients start a ServerSocket
after sending the multicast message to signal the server that it wants to
connect. The server then connects to this ServerSocket. After estab-
lishing the connection there is no difference between both sides. Either
side can send and receive. The client sends a newly generated messages.
The server passes this message to all clients of which it has a reference
saved in a Vector. The clients receive this message and display them
using a JTextArea.

3.4.2 The Administrator Client

The client for administration doesn’t have to be implemented. For this
task a normal web browser can be used. The server has to listen on
a specified port, to send the last ten messages of the system to this
client. Those messages have to be kept up to date by rotating them in
an array of Strings. For the browser the data has to be sent by using
http (hyper text transfer protocol) so it can display the data correctly.
The server doesn’t use port 80 because this port is already used by a

Dokument Bearbeiten Anzicht Gehe zu Lesezeicher

e G i ¢

EP fidresse | @] http://localhost 13090/

Last 10 messages:

zlientl has connectet
clientl: hullo?
clientl: someone there?
client? has connected
clientZ: hi

clientl: hello

client? hasz diconnected

Figure 7: Output of the administration client

apache web server running on the same machine. Instead port 9090
is used. To get the last ten messages the address of the server has to
be typed in the address field of a web browser. The output is shown
in figure [7] If it is used locally the address has to be the following:
http://localhost:9090.

11

4 Conclusion

4 Conclusion

With this application the possibilities of Java using TCP and Multicast
have been shown. Java provides an easy to use interface for networking.
The system that has been implemented is far from being perfect. The
graphical user interface of the client is minimalistic. The server only
prints some information to stdout. But since the focus of this assignment
has been on networking there was no great attention drawn to other
parts. A problem of this solution is that only one client can be run
on each host, because the port number the client binds to is the same
on all clients. That is the reason why no load test of the system can
be performed using only a single machine. A possibility to solve this
would be to try to connect to a port first and change the port if needed
and then send it with the multicast to the server. The limitation of
the server is the maximum number of threads that can be started and
the maximum number of connections the system allows. Normally the
maximum number of connections on a Linux system is about 4000. What
could be changed too is the whole connection procedure. Using multicast
doesn’t allow to leave the local subnet because multicasts are not routed.
Instead the server could just listen to a normal port using TCP. The only
disadvantage would be that the client has to know the server’s address.

12

REFERENCES

References

[1] Goll Java als erste Programmiersprache

[2] http://java.sun.com/j2se/1.3/docs/index.html

13

	Aims and Objectives
	Networking in Java
	UDP
	TCP
	Multicast

	The chat system
	Requirements
	Analysis
	Design
	The Server Design
	The Client Design

	Implementation
	Client and Server
	The Administrator Client

	Conclusion

